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Abstract

Event-triggered Control (ETC) presents a promising paradigm for efficient resource usage
in networked and embedded control systems by reducing communication instances compared
to traditional time-triggered strategies. This paper introduces a novel approach to ETC for
discrete-time nonlinear systems using a data-driven framework. By leveraging Koopman
operator theory, the nonlinear system dynamics are globally linearized (approximately in
practical settings) in a higher-dimensional space. We design a state-feedback controller and
an event-triggering policy directly from data, ensuring exponential stability in Lyapunov
sense. The proposed Koopman Operator-Based Event-Triggered Control (KOETC) method
is validated through extensive simulation experiments, demonstrating significant resource
savings.

Keywords: Koopman operator, event-triggered control, lifting linear predictors,

data-driven control.

1. Introduction

ETC is an implementation strategy in which the plant and its controller only exchange

data when certain output- or state-related conditions are met. Event-triggered control seeks

to reduce communication instances by concentrating on the real needs of the system, in con-

trast to traditional conservative time-triggered strategies that depend on fixed time intervals
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for communication. In situations where efficient use of resources is essential, like networked

control systems and embedded systems, this paradigm has become more and more popular.

ETC strategies, which offer improved system performance and resource savings in a variety

of setups and control problems, have been developed in the literature thanks to the early

results by Åarzén in [1], Eker, Hagander, and Åarzén in [2] and the work of Tabuada [3],

and Heemls et al. [4].

In most of the current research, parametric state-space models are the foundation of

traditional control engineering, where the plant to be controlled must first be identified or

modeled. These models make use of the data from the system (from the input and the out-

put) and are frequently written down starting from physics first principles or architecturally

constrained system identification techniques. But in cases when first-principles models are

intricate or hard to derive, they can only be considered as approximate representations of

real systems, which inevitably leads to modeling errors. These errors impede accurate control

design and spread through the phases of analysis and implementation, affecting the overall

performance of the system.

By excluding the demand for explicit system identification and instead of leveraging data

gathered from open-loop simulations/experiments for any system control analysis and de-

sign, data-driven control techniques serves as a promising alternative. Several data-driven

techniques for creating state feedback controllers and illustrating system dynamics have been

shown in recent works, such as those by da Silva et al. [5], and De Persis and Tesi [6]. These

techniques greatly streamline the control design process and do not require constantly excit-

ing input data. There are also numerous applications of data-driven control in fields such as

robotics [7], aerospace [8], and power systems [9]. Other methods, when the model is com-

pletely unknown, such as SINDy [10] can be utilized to firstly get a nonlinear representation

of the dynamics of the system. For example, this approach is applied to model the dynamics

of: i) quadrotors’ [11], ii) disease [12], iii) optics communication systems [13], iv) chemical

processes [14], v) and also robotics applications [15].
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However, an alternative option in the situation, when first principles or system identifi-

cation techniques fail, would be to construct the controller directly using the input, state,

and output data that are now accessible. This approach is known as direct data-driven

control [16, 17, 18]. Although the literature is full of data-driven techniques for control, only

a limited number of techniques exist in the current literature [19, 20, 21] for data-driven

event-based control, particularly for nonlinear systems.

There exists, therefore, a profound demand for comprehensive data-driven event-based

control methods tailored for general nonlinear systems, particularly applicable to discrete-

time systems in our case. In many cases, it is appropriate and feasible to formulate the

control and triggering conditions as data-dependent Linear Matrix Inequality (LMI). Given

that most of the existing literature on ETC is well developed for Linear Time Invariant (LTI)

systems, we aim to globally linearize nonlinear systems by increasing the dimensional space

in which they reside.

This is not totally a new idea, as Koopman and von Neummann [22, 23] in 1930s presented

a trade-off between the nonlinear nature of dynamical systems and infinite dimensional

representation of the same nonlinear system but it will look linear in the lifted space. Another

resurgence of attention in mid 2000s in the work of Mezić and Banaszuk [24, 25] has led to

new applications and studies using the idea in many fields including, robotics, fluid dynamics,

epidemiology, power grids [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] and many other fields

due to the intersection between data science and the easy-to-access computational domain.

We consequently propose KOETC, a technique inspired by Koopman Operator (KO)

to acquire (approximately) global linear systems but in a higher dimensional space. After-

wards, we design the controller and the triggering policy for ETC for discrete-time linear

systems directly from controlled system data, all together ensuring performance metrics (i.e.

Lyapunov exponential stability).
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1.1. Contributions

By combining Koopman operator theory with event-triggered control (ETC), this paper

makes a contribution by introducing a Koopman-based approach to ETC for discrete-time

nonlinear systems. Through the approximate global linearization of nonlinear dynamics

made possible by this integration, the following direct, data-driven designs are made possible:

• An event-triggering policy minimizes resource consumption by updating control actions

only when required, reducing communication instances; and

• A state-feedback controller, which effectively stabilizes the system by utilizing the

Koopman-lifted linear dynamics.

In comparison to time-triggered approaches, the KOETC framework reduces communi-

cation events in simulations by up to 40% while achieving stability in the Lyapunov sense.

The rest of this paper is structured to methodically construct and validate the suggested

KOETC framework after the motivation and goals have been established. The preliminary

information and notations that are necessary to comprehend our methodology are outlined

in Section 2. In Section 3, the KOETC framework’s design is examined in detail, including

the triggering policy and data-driven controller. We provide simulation results in Section

4, which show how effective the approach is. The work’s conclusions and possible future

research directions are finally provided in Section 5.

2. Preliminaries

2.1. Notations and Basic Definitions

Let Z≥0 := {0, 1, 2, . . . } denote the set of nonnegative integers, and let Z>0 := Z≥0 \ {0}

denote the set of positive integers. We denote by R the set of real numbers and use a

similar notation as for Z. The ℓ2 norm of a vector (a finite sequence) is denoted by ∥ · ∥.

The symbols I and 0 denote the identity matrix and the zero matrix, respectively. Given a

symmetric matrix A, the notation A ≻ 0 indicates that A is positive definite, while A ⪰ 0
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means that A is positive semi-definite. Similarly, A ≺ 0 indicates that A is negative definite

and A ⪯ 0 means that A is negative semi-definite. For any matrix A, A⊤ denotes the

transpose of A. The symbol N (µ, σ2) represents a normal distribution with mean µ and

variance σ2. Also, the symbol U(a, b) represents a normal distribution from the interval

[a, b]. The symbol λi denotes an eigenvalue of a matrix. We define ⟨·, ·⟩ as the inner product

between the two vectors/functions a, b. A square-integrable function r, or an L2-function,

is a measurable function for which the integral of the square of the absolute value is finite

as: r(x) ∈ L2[−∞,∞] −→
∫∞
−∞|r(x)|2dx < ∞. A pair of functions φi and φj are said to be

orthonomal if ⟨φi, φj⟩ = δij, where δij is the Kronecker-delta function. We use (̄·) to denote

the complex conjugate.

2.2. Problem Overview

Consider the discrete time dynamical system

xk+1 = f(xk, uk), (1)

where the state is xk ∈ Rn and uk ∈ Rm is the control input, each at time instant k ∈ Z≥0

with n,m ∈ Z>0, and f is a transition map such that f : Rn×Rm 7→ Rn, generally nonlinear,

and assumed to be unknown, and stabilizable.

We consider a scenario where the system in (1) is connected to a controller via networked

medium. Especially, the state readings are provided to the controller through a digital

channel, and the controller has direct access to the actuators. The goal is to design a data-

driven event-triggered state-feedback controller with gain K ∈ Rm×n to stabilize the plant

in (1) while abiding by a triggering policy that defines the instances {ki}i∈Z at which a

transmission happens, with Z ⊆ Z≥0. At the time instant k = 0, we consider a transmission

happens, so that k0 = 0. In our settings, the controller is updated only upon the violation

of some well-defined triggering policy in contrary to the nominal Time-triggered Control

(TTC). The sequence {ki}i∈Z leads to aperiodic updates of the controller. The controller
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then follows a zero-order hold implementation that takes the form of

uk = Kxki , k ∈ [ki, ki+1). (2)

The state error takes into account the provided controller’s zero-order hold mechanism.

ek = xki − xk, (3)

which can be seen as the deviation between the current state and the last time an event (i)

happened. We consider the relative thresholding metric and events occur with the violation

of the condition

∥ek∥ ≤ γ∥xk∥ (4)

where γ > 0 is a relative parameter for the thresholding policy. The policy in (4) is checked

every time instant k, and only upon violation of the policy, the control is updated. An

overall picture of the ETC framework is shown in Fig. B.1 where the plant P can represent

(1), the controller C represents the control law (2), and the event-triggering policy can be

represented as in (4).

2.3. Persistence of Excitation

Consider a carried out experiment for the system in (1) and its states and input data are

recorded in the following way

D := {xk, uk : k ∈ [0, (T − 1)] ∩ Z≥0},
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where T is the final time of the experiment. Let set D exists. Then, we define

U0 :=

[
u0 u1 . . . uT−1

]
∈ Rm×T , (5a)

X0 :=

[
x0 x1 . . . xT−1

]
∈ Rn×T , (5b)

X1 :=

[
x1 x2 . . . xT

]
∈ Rn×T . (5c)

Assumption 1. Taking into account T ≥ n+m, the matrix
[

X
U0

]
has full row rank. □

Assumption 1 can be verified numerically for a given set D. The results of Willems

et al. [38] ensures, for discrete-time systems, the validity of assumption 1 as long as u is

persistently exciting signal.

3. Framework

3.1. Koopman operator theory

Definition 1 (Koopman Operator (KO)1). Consider the system given in (1). The KO Kt

is an infinite dimensional operator

Ktξ(xk) = ξ ◦ f(xk), (6)

acts on ξ ∈ H : Rn 7→ R, the observable functions of the state space, where ◦ is the function

composition. □

The KO acts on the Hilbert space H of all scalar measurement functions ξ and is by

definition a linear operator–since for ξ1, ξ2 ∈ H and β1, β2 ∈ R

Kt(β1ξ1, β2ξ2) = β1ξ1 ◦ f + β2ξ2 ◦ f

= β1Ktξ1 + β2Ktξ2,

(7)

1More details on the proof of this is given in the appendix.
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An infinite-dimensional space H of observable functions is used to represent a nonlinear

system linearly using KO method [39]. This means that the dynamics are changed from

nonlinear, finite-dimensional to linear, infinite-dimensional upon transitioning from the state-

space model to the Koopman representation (see Fig. B.2). However, we are interested in a

finite-dimensional approximation of KO from a practical perspective. Several approximation

methods are addressed in [40, 41].

To extend this analysis to controlled systems, there exists several methods including

[42, 43]. In [42], the authors treated the controlled system as uncontrolled while treating

the input as a system parameter. On the other hand, Korda and Mezić [43] dealt with the

controlled system in an extended state-space to account for control.

Here, the approach of [43] will be revisited in a short way. In particular, consider the

system in (1). Let ℓ(U) be the space of all infinite vectors u◦ = {uk}∞k=0 with the symbol

u◦ ∈ U and U being an input space. We denote the left shift operator by G⋆ (e.g., G⋆u◦
k =

u◦
k+1). Also, define X to be an extended state such that, X =

[
xk u◦

k

]⊤
. So, the system in

(1) can be updated to be,

Xk+1 = f̃
(
X
)
=



f(xk, u

◦
0)

G⋆u◦
k


 . (8)

If ξ̃ ∈ H : Rn×Rm 7→ R be a new version of the predefined observable function, the Koopman

operator Kt : H 7→ H for the controlled system is then be,

Ktξ̃(X ) = ξ̃ ◦ f̃(X ). (9)

This was a demonstration of the extension from the uncontrolled systems to the controlled

systems. From now on, we will use f, and ξ interchangeably between controlled and uncon-

trolled systems unless otherwise stated.

Also, KO provides (approximately, in a practical settings) global linear representation

for nonlinear dynamics if the right set of observable functions is chosen in as shown in the
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sequel. Generally speaking, the observable functions are hard to identify. They can be found

by many method including, but not limited to, brute-force trial and error in a specific basis

for the Hilbert space (e.g., trying numerous polynomial functions or Fourier basis functions)

or by prior knowledge about the system. Several efforts have been made on this matter

[44, 45, 46, 47, 48, 49, 28] – just to name a few.

Motivated by the preceding analysis, we will make use of the idea of lifting the nonlinear

dynamics from its state-space to look linear in a higher-dimensional state-space.

Remark 1. Our method necessitates a blurry prior physical knowledge of the underlying

plant, not necessarily a complete knowledge, but at least a knowledge that can describe the

domain shape in which the system operates to design the observable functions. □

Remark 2. At this stage of the work, we design the controller directly from the data. This

step requires a set of observable functions that are satisfactory to approximate KO with

notes regarding that being discussed in remark 1. In the sense that we do not focus on the

identification of the KO itself, we did not include discussion on such a topic. However, in

more general scenarios, one may need to identify the operator for any purpose. Readers can

refer to [50, 51]. □

Now, the collected set D should be revised. Instead of having the system’s states

only, we must consider the additional observable functions taking the form of Ξ(x) =[
ξ1(x) ξ2(x) . . . ξp(x)

]⊤
. The observable functions Ξ ∈ Rp(p > n). Note that we only

lift the state not the control. So the set D becomes

U0 :=

[
u0 u1 . . . uT−1

]
∈ Rm×T , (10a)

Z0 := Ξ(X0) ∈ Rp×T , (10b)

Z1 := Ξ(X1) ∈ Rp×T . (10c)

Remark 3. In response to this change, a slight modification of assumption 1, where T ≥

9



n+m will be replaced by T ≥ p+m. □

Hence, after choosing the set of observable functions, the system in (1) can be now

formulated as

zk+1 = Azk +Buk, (11a)

xk = Czk (11b)

3.2. Event-triggered Control For the Lifted Representation of the Non-linear Dynamics

Let’s consider the system given in (11), the globally linear version of the system in (1),

subject to the controller (2) that result in

zk+1 = Azk +BKzki (12a)

= Azk +BKzk +BKzki −BKzk (12b)

= (A+BK)zk +BKek, ∀k ∈ [ki, ki+1), (12c)

which can be understood as a closed-loop representation of the system in (11) with the state

error.

An alternative representation of the event-triggered closed loop system should be derived

to account for the data-driven nature of this work. In ref. [52] the authors derived a data-

driven representation of the closed loop system without considering the matrix BK. On the

other hand, Digge and Pasumarthy [20] arrived to a closed loop representation that allows

dealing with the event-triggered formulation. The representation in [5] is modified to account

for the lifted linear representation of the nonlinear dynamics.

Lemma 1 (Data-driven event-triggered cloosed loop representation [20, 6]). The equivalent

data-driven closed loop representation of the system (12) under the satisfaction of assumption
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1 and where



I

K


 =



Z0

U0


L, and




0

K


 =



Z0

U0


N, (13)

holds is given by

zk+1 = Z1Lzk + Z1Nek, (14)

where L and N are T × p matrices. □

Proof. Let assumption 1 holds. Hence, by the Rouché-Capelli theorem, there exist L and N

matrices that satisfy (13). So, another representation of (14) can be written as

zk+1 =

[
A B

]


I

K


 zk +

[
A B

]



0

K


 ek.

Using (13), the closed-loop system is given by

zk+1 =

[
A B

]


Z0

U0




︸ ︷︷ ︸
Z1

Lzk +

[
A B

]


Z0

U0




︸ ︷︷ ︸
Z1

Nek.

Therefore, the data-driven representation of the closed-loop system (12) is given by (13).

This formulation can be considered as a reparametrization of the system in (12) in terms

of data. In other words, no need for the prior explicit system identification step. Since

the formulation is derived, we move forward to derive the condition for system (14) to be

exponentially stable in Lyapunov sense. A linear system described by zk+1 = Azk, where

A ∈ Rp, is considered exponentially stable if there exists a function V : Rp 7→ R defined by

V (zk) = z⊤k Szk with S ≻ 0 and symmetric, such that V (zk+1) ≤ αV (zk) along the system’s

11



trajectories for all k ≥ 0 and for some α ∈ A = ]0, 1] ∈ R.

Remark 4. For unstable systems, the choice of α is critical as it impacts the values of the

controller gain K(α) which must satisfy the necessary conditions and thresholds to stabilize

the system. Mathematically we can formulate it as,

α⋆ = inf
α∈A

{
α : K(α) =⇒ |λi| < 1, ∀λi

}
,

where the K(α) is the gains corresponding to one value of α on A. □

Considering a classical Lyaponuv candidate function descried in the later paragraph, the

exponential Lyaponuv stability criteria2 is given by



zk

ek




⊤ 

L⊤Z⊤

1 SZ1L− αS L⊤Z⊤
1 SZ1N

N⊤Z⊤
1 SZ1L N⊤Z⊤

1 SZ1N






zk

ek


 ≤ 0 (15)

In this work, the design of the ETC strategy should not violate the Lyabunov stability

condition in (15) to ensure exponential stability.

3.3. Learning Controller From Data

Firstly, we design the controller gains to stabilize the globally linearized system. We

consider the data-driven closed loop representation in (14) neglecting the error at this stage

zk+1 = Z1Lzk, (16)

the controller gains can be designed directly from data, as discussed in [6, Section IV. A].

Further, the following theorem ensures the Lyaponuv stability condition.

Theorem 1 (Direct Controller Design). Let condition 1 hold. And by exploiting the results

2The full analysis is given in the appendix.
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of lemma 1. Then any matrix G1 that satisfy the following LMI,



Z0G1 G⊤

1 Z
⊤
1

Z1G1 Z0G1


 ⪰ 0 (17)

results in

K = U0G1(Z0G1)
−1 (18)

which stabilizes the system (11). □

Proof. To check the stability in exponential decay of the system (16) with a rate α, implies

L⊤Z1SZ1L− αS ⪯ 0, (19)

with L satisfying (13). Let G1 := LS−1, and pre- and post-multiply (19) by S−1, the stability

of the system can be guaranteed if there exists two matrices G1 and S such that

G⊤
1 Z

⊤
1 SZ1G1 − αS−1 ⪯ 0

KS−1 = U0G1

S−1 = Z0G1

Moreover, we use S−1 = Z0G1 and obtain

G⊤
1 Z

⊤
1 (Z0G1)Z1G1 − αZ0G1 ⪯ 0

Z0G1 ≻ 0

K = U0G1(Z0G1)
−1

Using Schur’s complement lemma on the first inequality, we reach to (17) which results in

gains given from (18) that exponentially stabilize the system.
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3.4. Learning the Triggering Policy from Data

In the interval [ki, ki+1), it is essential that inequality (15), which ensures exponential

convergence, is also satisfied. The following theorem derives a window for the parameter γ

that ensures the stability of system (14).

Theorem 2 (Optimal Threshold). Assume that the condition 1 is satisfied. So, the relative

threshold parameter γ for the event-triggered implementation (4) with the controller (18) can

be calculated by solving for γ such that

max
q,G2

γ

s.t.



αZ0G1 0 G⊤
1 Z

⊤
1 γZ0G1

0 qI G⊤
2 Z

⊤
1 0

Z1G1 Z1G2 Z0G1 0

γZ0G1 0 0 qI



⪰ 0,

q > 0, Z0G2 = 0, UG2 − qK = 0,

(20)

which will result in stability of the system (14) in exponential behaviour. □

Proof. For exponential stability during event-triggered control, whenever the triggering con-

dition (4) is met, the condition (15), which guarantees stability, must hold as well. This

relationship can be encoded using the S-procedure [53]. According to the S-procedure, (4)

implies (15) if there exists a constant η ≥ 0 such that:

η



−γ2I 0

0 I


 ⪯



L⊤Z⊤

1 SZ1L− αS L⊤Z⊤
1 SZ1L

L⊤Z⊤
1 SZ1L L⊤Z⊤

1 SZ1L


 .
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Using Schur’s complement, and post- and pre-multiplying by the diag(S−1, I, I), we derive:




−ηγ2S−2 + αS−1 0 S−1L⊤Z⊤
1

0 ηI N⊤Z⊤
1

Z1LS
−1 Z1Nη−1 S−1



⪰ 0.

By changing the variables G1 = LS−1, G2 = η−1N , q = η−1, and S−1 = Z0G1, we arrive at

the LMI: 


αZ0G1 0 G⊤
1 Z

⊤
1 γZ0G1

0 qI G⊤
2 Z

⊤
1 0

Z1G1 Z1G2 Z0G1 0

γZ0G1 0 0 qI



⪰ 0.

The result of theorem 2 allows to maximize γ over the variables G2 and q. The result also

implies that any γ ∈ [0, γ⋆) stabilizes the system, where γ⋆ is the solution for (20).

Now, we have all the components put together. A detailed algorithm for the entire process

is given in algorithm 1.

Algorithm 1 KOETC: Koopman Operator-Based Event-Triggered Control
Require: α, X0, X1, and U0

1: Lift X0, and X1 via (10 b, and c)
2: Solve for G1 in the LMI given in (17)
3: Solve for the controller gain K in (18)
4: Maximize the threshold parameter γ to get γ⋆ in (20)
5: Choose any γ ∈ [0, γ⋆], (typically the max. value gives wider inter-event time window)
6: return γ⋆, and K
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4. Illustrative Simulations and Results

4.1. Illustrative Example: Proof of Concept

We consider a case of nonlinear system with slow manifold used in relative works [54, 55,

56]:



x1

x2


 7→




ρx1

κx2 + (ρ2 − κ)x2
1 + u


 (21)

In this scenario, there exists a polynomial stable manifold defined as x2 = x2
1. Within

the Koopman-inspired framework, if the correct observable functions were chosen such that

Ξ(x) =

[
x1 x2 x2

1

]⊤
, the nonlinear system in (21) can be expressed linearly as




z1

z2

z3




k+1

=




ρ 0 0

0 κ (ρ2 − κ)

0 0 ρ2







z1

z2

z3




k

+




0

1

0



uk (22)

Considering the parameters for the system, ρ = 0.6, and κ = 1.2, the corresponding eigen-

values (displayed in Fig. B.4)

are λ1 = 0.6, λ2 = 1.2, and λ3 = 0.36. Since λ2 > 1, the system exhibits instability and

the goal is to stabilize the trajectory around the origin. We collected the data for T = 45

which is enough for assumption 1 to hold – on a theoretical note, T ≥ m+ p samples should

be enough (i.e. in this example T ≥ 4) to obey assumption 1. Therefore, T = 4 should work.

The input signal is drawn from a normal distribution following u ∼ N (0, 1).3

Then, after deploying the steps in algorithm 1, we obtain K =

[
0.0206 −1.1109 −0.1530

]
,

which in turn gives γ⋆ = 0.7664. We simulated the system for both ETC, and TTC and

illustrated the behavior in Fig. B.3. All the results depicted in Fig. B.3, are acquired after

3The used code can be found at: zmanaa.github.io/koetc
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pulling the states back from the higher-dimensional space, in this case from R3 to R2, by

applying (11b) with C =
[
I2 0
0 0

]
.

Fig. B.3(a), illustrates the state evolution x1 and x2 against time under both ETC

and TTC techniques. The trajectories for ETC demonstrate excellent tracking performance

in comparison with the nominal TTC. This highlights the efficacy of the developed event-

triggered approach in maintaining system stability while minimizing unnecessary updates.

Also, in Fig. B.3(b), the graph shows that ∥ek∥ remains consistently below γ∥xk∥, sat-

isfying the triggering condition. As shown in Fig. B.3(c), the substantial reduction in com-

munication instances (40%) addresses potential concerns regarding communication overhead

in practical implementations.

Additionally, results in Fig. B.3(d) depicts the ratio of the Lyapunov function V (xk+1)/V (xk)

compared to the stability decaying rate α. The ratio remains below α, verifying that the

proposed event-triggered control law ensures exponential stability of the system. This gives

another check of the theoretical guarantees provided by the Lyapunov-based stability anal-

ysis.

The results in Fig. B.3(e) show the trajectory of the system in the state space and the

instances on the trajectory in which the event occurs.

Finally, As seen from Fig. B.5, ETC not only achieves comparable performance to TTC

but with fewer communication resources and less control cost which matches our hypotheses.

These findings indicate the high effectiveness of ETC in optimizing resource utilization.

Another note in our experiment, both Koopman based linearization ETC and TTC have

control cost much lower than the traditional Taylor linearization technique, consistent with

the results of Brunton et al. [54].

4.2. Sensitivity Analysis

In this subsection, we embark on a detailed and thorough examination aimed at under-

standing the influence of various parameters on the system’s behavior and stability. This

includes an in-depth analysis of how different initial conditions and the parameter α impact
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the system dynamics. We explore these effects through a series of extensive simulations,

designed to provide a comprehensive view of the system’s response under a range of sce-

narios. By conducting these simulations, we seek to not only substantiate but also enrich

our theoretical insights. The simulations serve as a critical tool in validating our theoreti-

cal predictions, allowing us to assess their applicability and accuracy in practical scenarios.

This rigorous approach ensures that our findings are well-grounded and robust, offering a

clearer understanding of how these parameters interact to influence the overall stability and

behavior of the system.

Initially, we assessed the robustness of the algorithm by simulating ten different random

initial conditions drawn from a uniform distribution ∼ U(−5, 5). Fig. B.6 shows the behavior

of both x1 and x2 while starting with those random initial conditions. The figures show that

while the initial conditions varies significantly, the behaviour of the system states stabilizes

in a finite amount of time. An interesting observation from the same figure is that the error

decay rate between the state and the reference in the log scale is nearly linear, supporting

the paper’s earlier demonstration of the exponential error decaying property.

Subsequently, the initial conditions were fixed at x0 =

[
0.5 −0.4

]
simulations were

conducted across a fine grid of different α values ranging from 0.4 to 1. The choice of

0.4 as the starting value is informed by empirical observations, which indicate that this

value represents the minimum threshold necessary to achieve an adequate gain for system

stabilization, as detailed in remark 4. Fig. B.7 demonstrates that for each value of α, there

is no violation in the rate of Lyapunov function decay. The values on the x-axis in this

figure must not exceed their corresponding values on the y-axis (i.e. they cannot cross the

line max
(
V (k + 1)/V (k)

)
= α). In other words, no deviation from the expected decaying

behavior is observed.

4.3. Time and Computation Insights

With a persistently excited signal sequence with a length of 45 in a three-state system,

the algorithm’s efficiency was clearly demonstrated by the fast execution of the controller
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learning process, which required only 0.4 seconds on an M2 MacBook Air. Moreover, the

learning of the triggering policy, which governs when updates to the control system are

necessary, was equally efficient. For the same problem setup, the algorithm completed this

task in 0.49 seconds.

By having these results of the low computation times, the algorithm not only shows

significant results in learning efficiency but also emphasizes its potential scalability for larger,

more complex systems. This high performance on a personal computer level further supports

the practical applicability of the method in a broad range of control scenarios.

5. Conclusion

To sum up, this study proposes an event-triggered control approach based on data-driven

methods for discrete-time nonlinear systems. By lifting the nonlinear dynamics into a higher-

dimensional linear representation inspired by the KO theory, the method makes it possible

to create an event-triggered controller driven by data. Through the development of a closed-

loop system and the implementation of a triggering strategy, the proposed method stabilizes

the plant with less frequent control updates.

The event-triggered closed-loop system’s exponential stability is guaranteed by the stabil-

ity analysis, which is based on the Lyapunov criterion. Numerical simulations and theoretical

analysis are used to show how effective the suggested strategy is. This work creates opportu-

nities for real-world applications in networked control systems and advances event-triggered

control techniques for nonlinear systems.

The foundations provided by this work shall allow dealing with many other scenarios

including, when the plant (discrete or continuous) include time varying parameters, when

the full state measurements are not available, or when policies other than the zero-order hold

is used. Additionally, examining the various lifting techniques available in the literature is

important, as well as, testing the scalability of the solution.
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Appendix A. Proof of the existence of the Koopman operator by construction

This introduces the proof of the existence of the Koopman operator. Firstly, consider the

dynamical system in (1), and a Hilbert space H of L2-functions with inner product defined

as,
〈
r(x), ξ(x)

〉
=

∫

X

r(x)ξ̄(x)dx, r, ξ ∈ H. (A.1)

Suppose that the space H is spanned by orthonormal basis functions φ1, φ2, . . . , φn, then the

function ξ ∈ H can be expressed as

ξ(x) =
∞∑

i=1

aiφi(x); ai =
〈
ξ(x), φi(x)

〉
=

∫

X

ξ(x)φ̄i(x)dx. (A.2)

Consider a function f : Rn 7→ Rn whose composition with ξ is involved in the Hilbert

space as,

ξ(x) ◦ f(x) = ξ
(
f(x)

)
∈ H, (A.3)

this implies that the composition can also be expressed as,

ξ(x) ◦ f(x) =
∞∑

j=1

bjφj(x); bj =
〈
ξ(x) ◦ f(x), φj(x)

〉
, (A.4)

but,

bj
(A.2)
=

〈[ ∞∑

i=1

aiφi(x)
]
◦ f(x), φj(x)

〉
(A.5a)

=
∞∑

i=1

ai

〈
φi(x) ◦ f(x), φj(x)

〉
, (A.5b)
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therefore, (A.4) will be,

ξ(x) ◦ f(x) =
∞∑

i=1

∞∑

j=1

ai

〈
φi(x) ◦ f(x), φj(x)

〉
φj(x) (A.6a)

=

∞∑

i=1

ai

∞∑

j=1

〈
φi(x) ◦ f(x), φj(x)

〉
φj(x)

︸ ︷︷ ︸
φi(x)◦f(x)

(A.6b)

(A.2)
=

∞∑

i=1

〈
ξ(x), φi(x)

〉
φi(x) ◦ f(x) (A.6c)

=
∞∑

i=1

φi(x) ◦ f(x)
〈
φ̄i(x), ξ(x)

〉
(A.6d)

=
∞∑

i=1

φi

[
f(x)

] ∫

X
φ̄i(ζ)ξ(ζ)dζ (A.6e)

=

∫

X

∞∑

i=1

φi

[
f(x)

]
φ̄i(ζ)

︸ ︷︷ ︸
:=Kt(x,ζ), as a kernel

ξ(ζ)dζ. (A.6f)

This means that the function ξ is mapped to its composition with the function f through

the linear operator Kt(x, ζ), which is exactly the Koopman Operator taking the form of

Ktξ = ξ ◦ f(x). These results can be easily applied to controlled dynamics as found in

section 3.1.

Appendix B. Lyapunov Stability Analysis

This subsection of the appendix presents the exponential stability of the system given by

zk+1 = Z1Lzk + Z1Nek (B.1)

in a Lyapunov sense with the candidate V (k) = z⊤k Szk.
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First, V (zk+1) can be computed as follows

V (zk+1) = (Z1Lzk + Z1Nek)
⊤ S (Z1Lzk + Z1Nek)

= z⊤k L
⊤Z⊤

1 SZ1Lzk + z⊤k L
⊤Z⊤

1 SZ1Nek + . . .

. . . e⊤k N
⊤Z⊤

1 SZ1Lzk + e⊤k N
⊤Z⊤

1 SZ1Nek

(B.2)

Lyapunov exponential stability condition with convergence rate α can be reached by defining

V (zk+1) ≤ αV (zk). This leads to the following identity based on the candidate Lyapunov

function
z⊤k L

⊤Z⊤
1 SZ1Lzk + z⊤k L

⊤Z⊤
1 SZ1Nek + . . .

. . . e⊤k N
⊤Z⊤

1 SZ1Lzk + e⊤k N
⊤Z⊤

1 SZ1Nek ≤ αz⊤k Szk

(B.3)

By defining v = [ zkek ], Eqn. (B.3) can be written in the form of v⊤Ψv ≤ 0, where

Ψ =



L⊤Z⊤

1 SZ1L− αS L⊤Z⊤
1 SZ1N

N⊤Z⊤
1 SZ1L N⊤Z⊤

1 SZ1N


 (B.4)

Therefore, the Lyapunov stability condition for the system can be written as



zk

ek




⊤ 

L⊤Z⊤

1 SZ1L− αS L⊤Z⊤
1 SZ1N

N⊤Z⊤
1 SZ1L N⊤Z⊤

1 SZ1N






zk

ek


 ≤ 0 (B.5)

If condition (B.5) is satisfied, it then guarantees exponential stability of the system with

convergence rate α.
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<latexit sha1_base64="OZzVQmPFTA7pwt8kGV7GVoGLAU8=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUpQeYwVLIxFog+pjSLHcVurjhPZTqUS9U9YGECIlT9h429w2gzQciTLR+fcKx+fIOFMacf5tkpr6xubW+Xtys7u3v6BfXjUVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvsv9zoRKxWLxqKcJ9SI8FGzACNZG8m27H8Q8VNPIXNnTzK/7dtWpOXOgVeIWpAoFmr791Q9jkkZUaMKxUj3XSbSXYakZ4XRW6aeKJpiM8ZD2DBU4osrL5sln6MwoIRrE0hyh0Vz9vZHhSOXhzGSE9Ugte7n4n9dL9eDGy5hIUk0FWTw0SDnSMcprQCGTlGg+NQQTyUxWREZYYqJNWRVTgrv85VXSvqi5V7XLh3q1cVvUUYYTOIVzcOEaGnAPTWgBgQk8wyu8WZn1Yr1bH4vRklXsHMMfWJ8/BruT7Q==</latexit>z4

<latexit sha1_base64="SuttjDXO0CwbONmoTOnMP9o6bjI=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoQBcYKFsYi0YfURpHjOK1VJ45sp1KJ+icsDCDEyp+w8Te4bQZoOZLlo3PulY9PkHKmtON8W6W19Y3NrfJ2ZWd3b//APjxqK5FJQltEcCG7AVaUs4S2NNOcdlNJcRxw2glGdzO/M6ZSMZE86klKvRgPEhYxgrWRfNvuB4KHahKbK3+a+nXfrjo1Zw60StyCVKFA07e/+qEgWUwTTThWquc6qfZyLDUjnE4r/UzRFJMRHtCeoQmOqfLyefIpOjNKiCIhzUk0mqu/N3Icq1k4MxljPVTL3kz8z+tlOrrxcpakmaYJWTwUZRxpgWY1oJBJSjSfGIKJZCYrIkMsMdGmrIopwV3+8ippX9Tcq1r94bLauC3qKMMJnMI5uHANDbiHJrSAwBie4RXerNx6sd6tj8VoySp2juEPrM8fCD+T7g==</latexit>z5
<latexit sha1_base64="ylOL9jNyTEGmM4je1w/CF0bjN98=">AAAB+XicbVC7TsMwFL3hWcorwMhiUSExVQniNVawMBaJPqQ2ihzHaa06TmQ7lUrUP2FhACFW/oSNv8FpM0DLkSwfnXOvfHyClDOlHefbWlldW9/YrGxVt3d29/btg8O2SjJJaIskPJHdACvKmaAtzTSn3VRSHAecdoLRXeF3xlQqlohHPUmpF+OBYBEjWBvJt+1+kPBQTWJz5U9Tn/l2zak7M6Bl4pakBiWavv3VDxOSxVRowrFSPddJtZdjqRnhdFrtZ4qmmIzwgPYMFTimystnyafo1CghihJpjtBopv7eyHGsinBmMsZ6qBa9QvzP62U6uvFyJtJMU0HmD0UZRzpBRQ0oZJISzSeGYCKZyYrIEEtMtCmrakpwF7+8TNrndfeqfvlwUWvclnVU4BhO4AxcuIYG3EMTWkBgDM/wCm9Wbr1Y79bHfHTFKneO4A+szx9XD5Qi</latexit>zi

<latexit sha1_base64="KAtMPlFN8tBIU24dh21TtNnGdMU=">AAAB+XicbVC7TsMwFL0pr1JeAUaWiAqJqUoQr7GChQkViT6kNoocx22tOnZkO5VK1D9hYQAhVv6Ejb/BaTNAy5EsH51zr3x8woRRpV332yqtrK6tb5Q3K1vbO7t79v5BS4lUYtLEggnZCZEijHLS1FQz0kkkQXHISDsc3eZ+e0ykooI/6klC/BgNOO1TjLSRAtvuhYJFahKbK3uaBveBXXVr7gzOMvEKUoUCjcD+6kUCpzHhGjOkVNdzE+1nSGqKGZlWeqkiCcIjNCBdQzmKifKzWfKpc2KUyOkLaQ7Xzkz9vZGhWOXhzGSM9FAtern4n9dNdf/azyhPUk04nj/UT5mjhZPX4ERUEqzZxBCEJTVZHTxEEmFtyqqYErzFLy+T1lnNu6xdPJxX6zdFHWU4gmM4BQ+uoA530IAmYBjDM7zCm5VZL9a79TEfLVnFziH8gfX5Ay4jlAc=</latexit>zN
<latexit sha1_base64="8DiID99L0DELQkxduqTFwIwiDw0=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVRLxtSy6EdxUsA9oQ5lMJ+3QySTO3BRK6He4caGIWz/GnX/jpM1CWw8MHM65l3vm+LHgGh3n2yqsrK6tbxQ3S1vbO7t75f2Dpo4SRVmDRiJSbZ9oJrhkDeQoWDtWjIS+YC1/dJv5rTFTmkfyEScx80IykDzglKCRvG5IcEiJSO+nPeyVK07VmcFeJm5OKpCj3it/dfsRTUImkQqidcd1YvRSopBTwaalbqJZTOiIDFjHUElCpr10FnpqnxilbweRMk+iPVN/b6Qk1HoS+mYyC6kXvUz8z+skGFx7KZdxgkzS+aEgETZGdtaA3eeKURQTQwhV3GS16ZAoQtH0VDIluItfXibNs6p7Wb14OK/UbvI6inAEx3AKLlxBDe6gDg2g8ATP8Apv1th6sd6tj/lowcp3DuEPrM8fFe2SUg==</latexit>Kt

<latexit sha1_base64="fsfwrlMsIwRpo3PPLy2WhdBklvs=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1l040aoYB8wHUomzbShmWRI7ghl6Ge4caGIW7/GnX9jpp2Fth4IHM65l5x7wkRwA6777ZRWVtfWN8qbla3tnd296v5B26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHt7nfeWLacCUfYZKwICZDySNOCVjJ78UERpSI7H7ar9bcujsDXiZeQWqoQLNf/eoNFE1jJoEKYozvuQkEGdHAqWDTSi81LCF0TIbMt1SSmJkgm0We4hOrDHCktH0S8Ez9vZGR2JhJHNrJPKJZ9HLxP89PIboOMi6TFJik84+iVGBQOL8fD7hmFMTEEkI1t1kxHRFNKNiWKrYEb/HkZdI+q3uX9YuH81rjpqijjI7QMTpFHrpCDXSHmqiFKFLoGb2iNwecF+fd+ZiPlpxi5xD9gfP5A4XKkW0=</latexit>M
<latexit sha1_base64="ESWrF/JkizZ6y+gjEODIFuAhUsA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsq9gHttGTStA1NMkOSUcow/+HGhSJu/Rd3/o2ZdhZaPRA4nHMv9+QEEWfauO6XU1haXlldK66XNja3tnfKu3tNHcaK0AYJeajaAdaUM0kbhhlO25GiWASctoLJdea3HqjSLJT3ZhpRX+CRZENGsLFSryuwGQdBcpf2EpH2yxW36s6A/hIvJxXIUe+XP7uDkMSCSkM41rrjuZHxE6wMI5ympW6saYTJBI9ox1KJBdV+MkudoiOrDNAwVPZJg2bqz40EC62nIrCTWUq96GXif14nNsNLP2Eyig2VZH5oGHNkQpRVgAZMUWL41BJMFLNZERljhYmxRZVsCd7il/+S5knVO6+e3Z5Wald5HUU4gEM4Bg8uoAY3UIcGEFDwBC/w6jw6z86b8z4fLTj5zj78gvPxDRMYkuc=</latexit>

Rm

<latexit sha1_base64="J3uGrIeVURPpUiCJ9dEuYmN7v14=">AAAB+nicbVDLTsMwEHR4lvJK4cjFokLiQpUgXscKLpxQkehDaqPKcZ3WquNE9gaoQj+FCwcQ4sqXcONvcNocoGWklUYzu/bu+LHgGhzn21pYXFpeWS2sFdc3Nre27dJOQ0eJoqxOIxGplk80E1yyOnAQrBUrRkJfsKY/vMr85j1TmkfyDkYx80LSlzzglICRunapA+wR0ptIHmVPEDXu2mWn4kyA54mbkzLKUevaX51eRJOQSaCCaN12nRi8lCjgVLBxsZNoFhM6JH3WNlSSkGkvnaw+xgdG6eEgUqYk4In6eyIlodaj0DedIYGBnvUy8T+vnUBw4aVcxgkwSacfBYnAEOEsB9zjilEQI0MIVdzsiumAKELBpFU0IbizJ8+TxnHFPauc3p6Uq5d5HAW0h/bRIXLROaqia1RDdUTRA3pGr+jNerJerHfrY9q6YOUzu+gPrM8fsGCUSw==</latexit>

Non-linear
<latexit sha1_base64="9igYHmoBzpxCkWGCfMDllW2xDq4=">AAAB9HicbVC7SgNBFJ2NrxhfUUubwSBYhV3xVQZtLCwimAckS5id3CRDZmfXmbvBsOQ7bCwUsfVj7PwbJ8kWGj0wcDjnHu6dE8RSGHTdLye3tLyyupZfL2xsbm3vFHf36iZKNIcaj2SkmwEzIIWCGgqU0Iw1sDCQ0AiG11O/MQJtRKTucRyDH7K+Ej3BGVrJbyM8Ynprw0xPOsWSW3ZnoH+Jl5ESyVDtFD/b3YgnISjkkhnT8twY/ZRpFFzCpNBODMSMD1kfWpYqFoLx09nRE3pklS7tRdo+hXSm/kykLDRmHAZ2MmQ4MIveVPzPayXYu/RToeIEQfH5ol4iKUZ02gDtCg0c5dgSxrWwt1I+YJpxtD0VbAne4pf/kvpJ2Tsvn92dlipXWR15ckAOyTHxyAWpkBtSJTXCyQN5Ii/k1Rk5z86b8z4fzTlZZp/8gvPxDVOWkno=</latexit>

Linear

<latexit sha1_base64="FEtsEoBqg+31TKfeyBcWQGBin7Y=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20oWy203bpZhN2N0IN/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNR1Sax/LBjBMMIjqQvM8ZNVbys6dJ1+uWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNjp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvg4zLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lOyIXiLLy+TxlnVu6xe3J9Xajd5HEU4gmM4BQ+uoAZ3UAcfGHB4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/1x2OuA==</latexit>z1

<latexit sha1_base64="UbbjNI0AFXCQKyvihHcqvypu5f8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kknx61j04rGCaQttKJvttF262YTdjVBDf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXJoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6DhVDH0Wi1i1QqpRcIm+4UZgK1FIo1BgMxzdTv3mIyrNY/lgxgkGER1I3ueMGiv52dOkW+2Wym7FnYEsEy8nZchR75a+Or2YpRFKwwTVuu25iQkyqgxnAifFTqoxoWxEB9i2VNIIdZDNjp2QU6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvg4zLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lO0IXiLLy+TRrXiXVYu7s/LtZs8jgIcwwmcgQdXUIM7qIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/2KGOuQ==</latexit>z2
<latexit sha1_base64="gpvWig7duNzxiNFZnBeYoGagRe8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8Pha9eKxg2kIbyma7bZduNmF3ItTQ3+DFgyJe/UHe/Ddu2xy0+mDg8d4MM/PCRAqDrvvlFJaWV1bXiuuljc2t7Z3y7l7DxKlm3GexjHUrpIZLobiPAiVvJZrTKJS8GY5upn7zgWsjYnWP44QHER0o0ReMopX87HHSPe2WK27VnYH8JV5OKpCj3i1/dnoxSyOukElqTNtzEwwyqlEwySelTmp4QtmIDnjbUkUjboJsduyEHFmlR/qxtqWQzNSfExmNjBlHoe2MKA7NojcV//PaKfavgkyoJEWu2HxRP5UEYzL9nPSE5gzl2BLKtLC3EjakmjK0+ZRsCN7iy39J46TqXVTP784qtes8jiIcwCEcgweXUINbqIMPDAQ8wQu8Osp5dt6c93lrwcln9uEXnI9v2iWOug==</latexit>z3

<latexit sha1_base64="+CX7By0bDhwSqrrqNs1OYrjtoxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20oWy203bpZhN2N0IN/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNR1Sax/LBjBMMIjqQvM8ZNVbys6dJ97xbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3ZCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/DjIuk9SgZPNF/VQQE5Pp56THFTIjxpZQpri9lbAhVZQZm0/JhuAtvrxMGmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR18YMDhGV7hzZHOi/PufMxbC04+cwh/4Hz+ANupjrs=</latexit>z4

<latexit sha1_base64="jJUA1QTkKrVLRe6TS5KpsLigNSQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KolY9Vj04rGCaQttKJvttF262YTdjVBDf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXJoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6DhVDH0Wi1i1QqpRcIm+4UZgK1FIo1BgMxzdTv3mIyrNY/lgxgkGER1I3ueMGiv52dOkW+2Wym7FnYEsEy8nZchR75a+Or2YpRFKwwTVuu25iQkyqgxnAifFTqoxoWxEB9i2VNIIdZDNjp2QU6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvg4zLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lO0IXiLLy+TxnnFu6xU7y/KtZs8jgIcwwmcgQdXUIM7qIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/3S2OvA==</latexit>z5

<latexit sha1_base64="iKC27mduqOl6Om3kXDz5OJMFe7s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20oWy203bpZhN2N0IN/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNR1Sax/LBjBMMIjqQvM8ZNVbys6dJl3fLFbfqzkCWiZeTCuSod8tfnV7M0gilYYJq3fbcxAQZVYYzgZNSJ9WYUDaiA2xbKmmEOshmx07IiVV6pB8rW9KQmfp7IqOR1uMotJ0RNUO96E3F/7x2avrXQcZlkhqUbL6onwpiYjL9nPS4QmbE2BLKFLe3EjakijJj8ynZELzFl5dJ46zqXVYv7s8rtZs8jiIcwTGcggdXUIM7qIMPDDg8wyu8OdJ5cd6dj3lrwclnDuEPnM8fLAyO8A==</latexit>zi

<latexit sha1_base64="8DiID99L0DELQkxduqTFwIwiDw0=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVRLxtSy6EdxUsA9oQ5lMJ+3QySTO3BRK6He4caGIWz/GnX/jpM1CWw8MHM65l3vm+LHgGh3n2yqsrK6tbxQ3S1vbO7t75f2Dpo4SRVmDRiJSbZ9oJrhkDeQoWDtWjIS+YC1/dJv5rTFTmkfyEScx80IykDzglKCRvG5IcEiJSO+nPeyVK07VmcFeJm5OKpCj3it/dfsRTUImkQqidcd1YvRSopBTwaalbqJZTOiIDFjHUElCpr10FnpqnxilbweRMk+iPVN/b6Qk1HoS+mYyC6kXvUz8z+skGFx7KZdxgkzS+aEgETZGdtaA3eeKURQTQwhV3GS16ZAoQtH0VDIluItfXibNs6p7Wb14OK/UbvI6inAEx3AKLlxBDe6gDg2g8ATP8Apv1th6sd6tj/lowcp3DuEPrM8fFe2SUg==</latexit>Kt

<latexit sha1_base64="aCefbhjMKLIYRVuoJedWh0laxfg=">AAAB8XicbVDLSsNAFL2pr1pfUZduBotQQUoivpZFNy4r2Ae2IUymk3boZBJmJmIJ/Qs3LhRx69+482+ctllo64ELh3Pu5d57goQzpR3n2yosLa+srhXXSxubW9s79u5eU8WpJLRBYh7LdoAV5UzQhmaa03YiKY4CTlvB8Gbitx6pVCwW93qUUC/CfcFCRrA20kPlyXdPUOq7x75ddqrOFGiRuDkpQ466b391ezFJIyo04Vipjusk2suw1IxwOi51U0UTTIa4TzuGChxR5WXTi8foyCg9FMbSlNBoqv6eyHCk1CgKTGeE9UDNexPxP6+T6vDKy5hIUk0FmS0KU450jCbvox6TlGg+MgQTycytiAywxESbkEomBHf+5UXSPK26F9Xzu7Ny7TqPowgHcAgVcOESanALdWgAAQHP8ApvlrJerHfrY9ZasPKZffgD6/MHlmmPkg==</latexit>

(x1, u1)

<latexit sha1_base64="ZJ0zBc5YwDe5cMbWlxoWXjvBDEo=">AAAB8XicbVDLSsNAFL2pr1pfVZduBotQQUpS6mNZdOOygn1gG8JkOmmHTiZhZiKW0L9w40IRt/6NO//GaZuFth64cDjnXu69x485U9q2v63cyura+kZ+s7C1vbO7V9w/aKkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH91M/fYjlYpF4l6PY+qGeCBYwAjWRnooP3nVM5R41VOvWLIr9gxomTgZKUGGhlf86vUjkoRUaMKxUl3HjrWbYqkZ4XRS6CWKxpiM8IB2DRU4pMpNZxdP0IlR+iiIpCmh0Uz9PZHiUKlx6JvOEOuhWvSm4n9eN9HBlZsyESeaCjJfFCQc6QhN30d9JinRfGwIJpKZWxEZYomJNiEVTAjO4svLpFWtOBeV87taqX6dxZGHIziGMjhwCXW4hQY0gYCAZ3iFN0tZL9a79TFvzVnZzCH8gfX5A5l4j5Q=</latexit>

(x2, u2)

<latexit sha1_base64="QYKJ6nN2B+FKP9y6aw0lolpJ8n4=">AAAB8XicbVDLSsNAFL2pr1pfVZduBotQQUpifS2LblxWsA9sQ5hMJ+3QySTMTMQS+hduXCji1r9x5984bbPQ1gMXDufcy733+DFnStv2t5VbWl5ZXcuvFzY2t7Z3irt7TRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35w5uJ33qkUrFI3OtRTN0Q9wULGMHaSA/lJ696ghKveuwVS3bFngItEicjJchQ94pf3V5EkpAKTThWquPYsXZTLDUjnI4L3UTRGJMh7tOOoQKHVLnp9OIxOjJKDwWRNCU0mqq/J1IcKjUKfdMZYj1Q895E/M/rJDq4clMm4kRTQWaLgoQjHaHJ+6jHJCWajwzBRDJzKyIDLDHRJqSCCcGZf3mRNE8rzkXl/O6sVLvO4sjDARxCGRy4hBrcQh0aQEDAM7zCm6WsF+vd+pi15qxsZh/+wPr8AZyHj5Y=</latexit>

(x3, u3)

<latexit sha1_base64="mj/a+3gQ2JdLkgj+4JwG2mDAlOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBotQQUpS6mNZdOOygn1gG8JkOmmHTiZhZiKW0L9w40IRt/6NO//GaZuFth64cDjnXu69x485U9q2v63cyura+kZ+s7C1vbO7V9w/aKkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH91M/fYjlYpF4l6PY+qGeCBYwAjWRnooP3m1M5R4tVOvWLIr9gxomTgZKUGGhlf86vUjkoRUaMKxUl3HjrWbYqkZ4XRS6CWKxpiM8IB2DRU4pMpNZxdP0IlR+iiIpCmh0Uz9PZHiUKlx6JvOEOuhWvSm4n9eN9HBlZsyESeaCjJfFCQc6QhN30d9JinRfGwIJpKZWxEZYomJNiEVTAjO4svLpFWtOBeV87taqX6dxZGHIziGMjhwCXW4hQY0gYCAZ3iFN0tZL9a79TFvzVnZzCH8gfX5A5+Wj5g=</latexit>

(x4, u4)

<latexit sha1_base64="Sb5xQDg78mAJAKLtJBVVMiblxZI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkWPVY9OKxgv3ANoTNdtMu3WzC7kYsof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zM82POlLbtbyu3srq2vpHfLGxt7+zuFfcPWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2RzdTv/1IpWKRuNfjmLohHggWMIK1kR7KT17tDCVe7dQrluyKPQNaJk5GSpCh4RW/ev2IJCEVmnCsVNexY+2mWGpGOJ0UeomiMSYjPKBdQwUOqXLT2cUTdGKUPgoiaUpoNFN/T6Q4VGoc+qYzxHqoFr2p+J/XTXRw5aZMxImmgswXBQlHOkLT91GfSUo0HxuCiWTmVkSGWGKiTUgFE4Kz+PIyaVUrzkWldndeql9nceThCI6hDA5cQh1uoQFNICDgGV7hzVLWi/Vufcxbc1Y2cwh/YH3+AKKlj5o=</latexit>

(x5, u5)

<latexit sha1_base64="sGeY9qVX+cQGbiB83xwCamfyJ6Y=">AAAB8XicbVDLSsNAFL2pr1pfUZduBotQQUoivpZFNy4r2Ae2IUymk3boZBJmJmIJ/Qs3LhRx69+482+ctllo64ELh3Pu5d57goQzpR3n2yosLa+srhXXSxubW9s79u5eU8WpJLRBYh7LdoAV5UzQhmaa03YiKY4CTlvB8Gbitx6pVCwW93qUUC/CfcFCRrA20kPlyWcnKPXZsW+XnaozBVokbk7KkKPu21/dXkzSiApNOFaq4zqJ9jIsNSOcjkvdVNEEkyHu046hAkdUedn04jE6MkoPhbE0JTSaqr8nMhwpNYoC0xlhPVDz3kT8z+ukOrzyMiaSVFNBZovClCMdo8n7qMckJZqPDMFEMnMrIgMsMdEmpJIJwZ1/eZE0T6vuRfX87qxcu87jKMIBHEIFXLiEGtxCHRpAQMAzvMKbpawX6936mLUWrHxmH/7A+vwBQcCQAg==</latexit>

(xi, ui)

<latexit sha1_base64="XfwCK5zZDdPU0ydowFOpTzy/11w=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzjGM9A==</latexit>

f

<latexit sha1_base64="w4oTMDg8fOHnTQb1Di581qdkpvg=">AAAB/nicbVDJSgNBEK2JW4zbqHjy0hiEiBJmxO0iBL14jGAWSMLQ0+lJmulZ6O6RhCHgr3jxoIhXv8Obf2MnmYMmPih4vFdFVT035kwqy/o2cguLS8sr+dXC2vrG5pa5vVOXUSIIrZGIR6LpYkk5C2lNMcVpMxYUBy6nDde/HfuNRyoki8IHNYxpJ8C9kHmMYKUlx9wbOKl/bI/QNfJKA8c/QYnjHzlm0SpbE6B5YmekCBmqjvnV7kYkCWioCMdStmwrVp0UC8UIp6NCO5E0xsTHPdrSNMQBlZ10cv4IHWqli7xI6AoVmqi/J1IcSDkMXN0ZYNWXs95Y/M9rJcq76qQsjBNFQzJd5CUcqQiNs0BdJihRfKgJJoLpWxHpY4GJ0okVdAj27MvzpH5ati/K5/dnxcpNFkce9uEASmDDJVTgDqpQAwIpPMMrvBlPxovxbnxMW3NGNrMLf2B8/gDRhZQe</latexit>

xk+1 = f(xk, uk)

<latexit sha1_base64="MgmLCd9bixz8ADAfy0hP+KasOto="></latexit>

zk+1 =
⇥
A B

⇤ zk

uk

�

<latexit sha1_base64="5AAere4XsFjLVDnh/zY405Opu8o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivddR95r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtfJY3f</latexit>

⇠

<latexit sha1_base64="gNoUjrxW7m9f3enOHNwEn5LCl3E=">AAACA3icbVC7SgNBFJ2NrxhfUTttBoNgFXbFVxm0sbCIYB6QLGF2cjcZMvtg5q4YloCNv2JjoYitP2Hn3zibpNDEAwOHc+5j7vFiKTTa9reVW1hcWl7JrxbW1jc2t4rbO3UdJYpDjUcyUk2PaZAihBoKlNCMFbDAk9DwBleZ37gHpUUU3uEwBjdgvVD4gjM0Uqe410Z4wPRG+Ahdmk1hiuqYcRh1iiW7bI9B54kzJSUyRbVT/Gp3I54EECKXTOuWY8fopkyh4BJGhXaiwUwesB60DA1ZANpNxzeM6KFRutSPlHkh0rH6uyNlgdbDwDOVAcO+nvUy8T+vlaB/4aYijBOEkE8W+YmkGNEsENoVCjjKoSGMK2H+SnmfKcbRxFYwITizJ8+T+nHZOSuf3p6UKpfTOPJknxyQI+KQc1Ih16RKaoSTR/JMXsmb9WS9WO/Wx6Q0Z017dskfWJ8/SFiX8Q==</latexit>

Lifted linear space
<latexit sha1_base64="4J17jp8hMohLM3DtiU3vilyWwl4=">AAAB+3icbVDJSgNBEO2JW4zbGI9eGoPgKcyI2zHoxWNEs0AyhJ5OJWnSs9BdIwnD/IoXD4p49Ue8+Td2kjlo9EHB472q7qrnx1JodJwvq7Cyura+UdwsbW3v7O7Z++WmjhLFocEjGam2zzRIEUIDBUpoxwpY4Eto+eObmd96BKVFFD7gNAYvYMNQDARnaKSeXe4iTDC9R4ZAdcw4ZD274lSdOehf4uakQnLUe/Zntx/xJIAQuWRad1wnRi9lCgWXkJW6iQbz8pgNoWNoyALQXjrfPaPHRunTQaRMhUjn6s+JlAVaTwPfdAYMR3rZm4n/eZ0EB1deKsI4QQj54qNBIilGdBYE7QsFHOXUEMaVMLtSPmKKcTRxlUwI7vLJf0nztOpeVM/vziq16zyOIjkkR+SEuOSS1MgtqZMG4WRCnsgLebUy69l6s94XrQUrnzkgv2B9fANlOpSv</latexit>

State space

<latexit sha1_base64="MHYYQvP7X3Ri8MfGeQ0XuHMFlhQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsq9oHtUDJp2oZmMkNyRyhD/8KNC0Xc+jfu/Bsz7Sy0eiBwOOdecu4JYikMuu6XU1haXlldK66XNja3tnfKu3tNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4OvNbj1wbEal7nMTcD+lQiYFgFK300A0pjoIgvZv2yhW36s5A/hIvJxXIUe+VP7v9iCUhV8gkNabjuTH6KdUomOTTUjcxPKZsTIe8Y6miITd+Oks8JUdW6ZNBpO1TSGbqz42UhsZMwsBOZgnNopeJ/3mdBAeXfipUnCBXbP7RIJEEI5KdT/pCc4ZyYgllWtishI2opgxtSSVbgrd48l/SPKl659Wz29NK7SqvowgHcAjH4MEF1OAG6tAABgqe4AVeHeM8O2/O+3y04OQ7+/ALzsc3wJ+Q/A==</latexit>

R

<latexit sha1_base64="rXRIs2qHIVmFyvoAmcJwS6unslc=">AAAB8XicbVDLSsNAFL2pr1pfVZduBotQQUpSfC2LblxW6AvbECbTSTt0MgkzE7GE/oUbF4q49W/c+TdO2yy09cCFwzn3cu89fsyZ0rb9beVWVtfWN/Kbha3tnd294v5BS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+6Hbqtx+pVCwSDT2OqRvigWABI1gb6aH85DXOUOI1Tr1iya7YM6Bl4mSkBBnqXvGr149IElKhCcdKdR071m6KpWaE00mhlygaYzLCA9o1VOCQKjedXTxBJ0bpoyCSpoRGM/X3RIpDpcahbzpDrIdq0ZuK/3ndRAfXbspEnGgqyHxRkHCkIzR9H/WZpETzsSGYSGZuRWSIJSbahFQwITiLLy+TVrXiXFYu7s9LtZssjjwcwTGUwYErqMEd1KEJBAQ8wyu8Wcp6sd6tj3lrzspmDuEPrM8fAYWP2A==</latexit>

(xT , uT )
<latexit sha1_base64="deo6HWCwYo5mU0zvxsRUXKB1g0g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eIeUGyhNlJJxkyO7vMzApxySd48aCIV7/Im3/jJNmDJhY0FFXddHcFseDauO63k1tZXVvfyG8WtrZ3dveK+wcNHSWKYZ1FIlKtgGoUXGLdcCOwFSukYSCwGYxup37zEZXmkayZcYx+SAeS9zmjxkoPT91at1hyy+4MZJl4GSlBhmq3+NXpRSwJURomqNZtz42Nn1JlOBM4KXQSjTFlIzrAtqWShqj9dHbqhJxYpUf6kbIlDZmpvydSGmo9DgPbGVIz1IveVPzPayemf+2nXMaJQcnmi/qJICYi079JjytkRowtoUxxeythQ6ooMzadgg3BW3x5mTTOyt5l+eL+vFS5yeLIwxEcwyl4cAUVuIMq1IHBAJ7hFd4c4bw4787HvDXnZDOH8AfO5w9HCI3P</latexit>zT

Figure B.2: Illustration of the Koopman Operator: The red panel represents the generic nonlinear state-
space. Conversely, the green panel represents the linear space.
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Figure B.3: Results of the illustrative example. (a) Behaviour of state x1 and x2 for both ETC and TTC
over the horizon. (b) Norms of the error ∥ek∥ and the threshold parameter γ∥xk∥. (c) Inter-event times
ki+1 − ki showing the intervals between successive events. (d) Lyapunov function ratio V (xk+1)/V (xk) with
stability threshold α. (e) The phase portrait of the system trajectory in the state space showing both the
ETC and TTC behaviour, it also shows the instances at which an event happens along the trajectory in the
ETC framework.
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Figure B.4: The eigenvalues of the system given in (22). Clearly, all the eigenvalues are not contained
inside the unit circle indicating the system’s instability.
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Figure B.5: Comparison between ETC and TTC methodologies. The plot on the left shows the number
of communication instances for each control strategy, where ETC significantly reduces the communication
overhead compared to TTC. The plot on the right shows the corresponding control costs for both methods.
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Figure B.6: A simulation of ten random initial conditions drawn from a uniform distribution X ∼ U(−5, 5).
The figure shows the behaviour of x1 (left), and x2 (right).
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Figure B.7: The relationship between α and the Lyapunov function decay rate. Simulations confirm no
violations in the decay rate, as all points lie below the boundary max

(
V (k+1)/V (k)

)
= α, ensuring system

stability across the tested α range.
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