Koopman-LQR Controller for Quadrotor UAVs from Data

Zeyad M. Manaa*

Ayman M. Abdallah* Mohammad A. Abido ¢

Syed S. Azhar Ali ?

Department of Aerospace Engineering at King Fahd University for Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

Department of Electrical Engineering at King Fahd University for Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

Goal: To control highly unstable, nonlinear system with the simplicity inherent in
the linear control with global linear approximation.

Desired properties for our scheme:

1. Global Linearity. Converts nonlinear quadrotor dynamics into a globally
inear model instead of local traditional linearization (e.g. Taylor linearization).

2. Efficiency. Enables fast and computationally light control design.

3. Stability. Ensures robust stabilization of highly unstable systems.

(1) Collect data (2) Select lifting functions (3) Lift and arrange snapshots (4) Approximate Koopman
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We present, given in the figure above, the first scheme to deal with all of these
Issues!

Koopman operator: consider the discrete time dynamical system:

xZ — f(xka uk)a
where z, € R” is the state vector, u; € R' is the control input, f is a transition

map, and z* is the successor state. The Koopman operator K; is an infinite-
dimensional operator:

th — € O f(ajk? uk))

actingon € € H: R" x R! — R, where o denotes function composition.

Lifted-space
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o[k + 1] = f(=[k], u[k])

Koopman operator is an effective method to offer a linear representation of non-
inear systems in in infinite-dimensional space by its action on the Hilbert space
H of measurement functions &.

https://arxiv.org/pdf/2406.17973

Koopman’s infinite-dimensional nature requires a finite approximation. EDMD with
the right observables achieves this.

Theorem: consider a dynamical system x, = f(xy, ux) ~ Az + Buy and dataset
D. The system can be written as:

=(XT) = [A B] F<FX)] = K.,

solving
K, = argmin ||Z(X ) — KQ||r.

Kt

will get an approximation for the Koopman operator.

After resolving the operator K, the linear lifted approximation of nonlinear dynam-
ICS becomes

2 = Az, + Buy,
Ll — Czk

with a higher dimension that the original state space of the system.

Motivated by the literature we come up with observable functions as

[

=(z) = 1, =, pws, Pwa, sin(pwn), cos(pwn), vec(R x wwp)] € RY.

Consider a quadratic cost function:
N-1
J = minimize Z ' (7)Qx(T) + u' (7)Ru(r),
ug,..., UN-1 )

If Koopman linearization is considered, the cost function still holds but with minor
modifications as follows
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Theorem: It is possible to have a matrix L, and a control law in the form of
u = —Lx such that the cost J I1s minimum with a Koopman linearized dynamics.

Koopman-LQR can be applied to control and stabilize very nonlinear topoligies like
quadrotors.

Quadrotor application: Consider a quadrotor dynamics given by the following

_pWB_ 1 pw
. d |pwn —agwp 1B+ gw
T = — = J(T,u) = m ,
dt | qwnB Az, SqwB @ wp
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the goal is to derive a linear formulation of this system then stabilize it.
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The problem uses 39 observable functions. Learning the Koopman operator on
an M2 MacBook Air took 0.1393 seconds. Inference over 200 timesteps totaled
0.0035 seconds, averaging 1.74 x 107 seconds per iteration.

states BNRMSE
3.2529 + 2.3216

pwp — Position
DWEB — \/€|OCity 4.8129 £ 3.8608
Ewp — Euler angles  2.4398 + 2.4263
wp — Angular velocity 7.8525 £ 6.6367
Mean 4.5895 + 3.8114
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